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Presentation

• Moore’s  Observation
• 2009/2010  COTS PetaFlop 

Supercomputers
– Transistor Level
– System Level
– Grid  Level
– A new  particle



swallach - April 2003 3

Hardware (constant price)

• Moore’s  Law (really an observation)
– doubling of processor performance every 18 

months (actually the number of transistors)
• Dram

– 4 times  the capacity every 3 to 4 years
• Disk

– doubling disk  capacity every 1.5 years
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Computer Advertisement -
Nov. 1990

Dallas Morning News
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Comparison  Side by Side -
2003

• 386 - 20 MHz
• 1 MByte  Ram
• 40 MByte Disk
• 2400 baud

• Pentium IV – 3 GHz
• 1024 MByte Ram
• 200  GByte Disk
• 1 Mbit (dsl or cable)

150:1

1024:1

5000:1

416:1

Double  Every 18  months  (4 times every 36 months)  yields  128 times in 11  years

Triple Every 36 months   yields  81 times  every  12  years 

• DOS Based/VMS • DOS Based/WNT

The most important advance in software in the last 10 years
is OPEN  SOURCING – not technology
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LinPack Analysis
• Compaq 386/SX20 SX with FPA - .16 Mflops
• Pentium IV – 2.80 GHz – 1317 Mflops
• 12  years  8231 (Doubling in less than a year, 

for 12 years)
• How

– Clock = 140x (Moore’s Law)
– External Bus Width & Caching – 16 vs. 64 bits = 4x
– Floating Point - 4/8 bits multi vs. 64 bits (1 clock) = 8x
– Compiler Technology = 2x

Parallelism and Software’s Impact as significant
As  Moore’s Law



ITRS  RoadMap- 2001/2002

Selected Figures/Tables

http://public.itrs.net
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Transistor Density – Near Term
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Transistor Density – Long Term
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I/O PADS
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Frequency/Gate Length 2001-2016
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ITRS CONCLUSION

• Approximately a tripling of I/O  Pin 
transfer  rates over the next 9 years.

• Overall
– we see 9x the gate count
– we see 2.3x the number of pins
– we see 3x the I/O  pin speeds (source  synchronous,  

greater with clock recovery mechanisms) – how many?
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CONCLUSION

Compared to 1999,  technology  advancements are increasing.

Economic Warfare – only the financially strong survive
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Reflection and Refraction

ISSC 2002 – San Francisco
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OPTICAL  SWITCHING - WHY
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2001 –SIA Study
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Moore’s Law

But at what cost?
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AMPLIFIER TECHNOLOGY

fc *λ=

(WDM)
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SYSTEM   ARCHITECTURE

SMP SMP

DATA or
COMM

SWITCH

SMP SMP
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ABOVE/BELOW THE LINE

• 5  Levels (x,y,z,t,iteration)

• DO  IT =

– DO  TIME = 
• DO  X=
• DO  Y=
• DO  Z=

EXPLICIT - MPI, THREADS, HPF, OBJECTS

AUTOMATIC - FORTRAN/C
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Reflections on Software
• Scalar Vector

– Vectorization, restructure
• Vector SMP

– Parallelization,  restructure
• SMP MPP

– Data distribution, HPF, restructure
• SMP Cluster of MPP

– Data Distribution, MPI, low-latency interconnects,  
restructure

• Speed  of Light is the ultimate limiting factor 
(does not scale over time).

• The C2K problem
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C2K Problem
• 50 Meter Radius (100 Meter Round Trip)
• Lower Bound of 500 ns Latency (Hardware -

General Case)
• Thus over time, Latency gets proportionally worse

– Same Problem exists in Processor Clock Vs. Memory 
Access Time.

• Solutions
– Better Spatial locality (Bigger SMP’s)
– Spatially/Topologically Systems

• Remember 250 Watts/Sq. Ft Cooling (air)
• LANL 40,000 Sq. Ft => 10 Megawatts

– Better Latency Tolerant Algorithms
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SOFTRON – Particle Physics

• Hardware has
– Electrons,  photons, etc.
– Well behaved  and understood rules

• Software has
– None of the above
– Search for the Softron
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SOFTRON – Fundamentals

• No Mass
• No Charge

– Actually accumulative over a 5 year period
• High Energy Accelerators need to be built 

to determine its fundamental structure
– Secondary priority at CERN
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SOFTRON - Principles

• Half life about 20 years
• Fixing a bug is inversely proportional to the 

time it takes to find it
• Debugging the first 95% is easy, the second 

95% is  more difficult
• The closer to Redmond, WA,  the more 

difficult to determine the  softron existence
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What is needed

• A realization that software is an engineering 
discipline by both developers and managers

• A fundamental new approach for 
development and verification
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What Next

• Two Views (2007 vs. 2009)
– Crawford – (presented at 2002 

Microprocessor Forum
• “Billion-Transistor Budget,  A Different Kind of 

Real Estate Development”, Oct 15.2002

– Wallach

• Compare/Contrast
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Architecture 1

• Shared Common  L3 Cache
• SMP (4 processors)
• One External Memory Bus
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McKinley / IA-64

• 221 million transistors
• 3 MByte – L3 Cache

– 175 Million Trans
– 25 Million VLIW Core
– 21 Million L1/L2 

Cache

• 6.4 GBytes/sec I/O
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ARCH. 2- LONG TERM- 2009
• THE ITRS STUDY TEACHES US:

– 10 gbits of  dram - (1.25  GBytes)
• 2.35 Gbits (DRAM)/cm2

– 200  Mbits of  sram – 24 MBytes
– 1200 million MPU  transistors 
– 65 nm lithography, 2.00 cm  on-a-side (400 mm2)
– 10 ghz  clock within  vliw/risc core
– 10 ghz across die (CDR within chip?)
– 1024  external  signal pins
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Architecture 2

• Distinct L3 Cache
• Multiple External I/O  Busses
• SMP (4 Processors)



MAXIMUM PIN-USE
EXTERNAL SMP- 2/4 CPU’S

160 gbytes/sec (8b/10b)
128 data  pins 10  ghz

40  GFLOPS

240 gbytes/sec

VLIW/RISC CORE
40 GFLOPS

240 gbytes/sec

coherence

24 bytes wide 24 bytes wide

10 ghz

2nd LEVEL CACHE
8  MBYTES

10  ghz

2nd LEVEL CACHE
8  MBYTES

VLIW/RISC CORE

1wr+2rd

160  gbytes/sec
128 data  pins10  ghz

...



INTEGRATED  SMP – 2 CPU

10 ghz
160  bytes/sec
128  pins/bus

VLIW/RISC CORE
40 GFLOPS

10 ghz

240 gbytes/sec 240  gbytes/sec
24 bytes wide 24 bytes wide

VLIW/RISC CORE
40  GFLOPS

10  ghz
...

2nd LEVEL CACHE
8  MBYTES

2nd LEVEL CACHE
8  MBYTES

coherence

...CROSS BAR
BUS 1

BUS  2

DRAM – 64/256 MBYTES - HIGHLY  INTERLEAVED



INTEGRATED  SMP - WDM

VLIW/RISC CORE
40  GFLOPS

10  ghz

240 gbytes/sec
24 bytes wide

240 gbytes/sec
24 bytes wide

VLIW/RISC CORE
40 GFLOPS

10  ghz
...

2nd LEVEL CACHE
8 MBYTES

2nd LEVEL CACHE
8  MBYTES

CROSS BAR

DRAM – 64/256 MBYTES - HIGHLY  INTERLEAVED
MULTI-LAMBDA

AON

coherence 640  GBYTES/SEC
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Compare & Contrast

• Many Smaller L3 
Caches. What Cache 
Blocking Approach 
does the compiler use?

• Lower Latency –
direct access from 
processor

• L3  Cache coherent 
issue

• One Bigger Shared L3 
Cache. Adaptive to 
dynamic Allocation of 
data

• Higher Latency due to 
cross-bar  in front of 
Cache

• No cache coherent  
issues (shared cache)
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Compare  & Contrast

• Physical Design may 
be more complex due 
to merging of L3 
requests

• One I/O
– Simplifies Interface 

Design
– Lower Bandwidth

• Single L3 cache single 
point of failure

• Step and repeat 
cpu/cache hierarchy

• Potential Multiple I/O
– More Pin Out (Can  

this be  implemented?
– Higher Bandwidth

• More Fault Tolerant
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Sobering Calculation (Common 
to Both Architectures)

• 100  Gflops Peak Performance (4 cpu’s)
• 400  GBytes/sec  I/O Desirable (Real *8 Saxpy)
• Perhaps 80 GBytes/sec Achievable (ratio =1/5). McKinley 

is approx .4 = (6.4 GB/s /(4 Gflops x 4 B))
• Yields 640 Gbits/sec
• 64 10 Gbit/sec CDR Interfaces(?) (Point to Point Interface 

– NOT BUS)
– Multi-Level Signaling for  greater than10 Gbits/sec(?)
– Can’t share bus with CDR signaling

• What does main memory system  look like? (with inputs 
from multiple die – each input 64 CDR interfaces)
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COTS PetaFlop System -2009

• 8192  Dies (4  CPU/die-minimum)
• Each  Die is 160  Gflops (external memory)
• 1.3  PetaFlop Peak
• Power 8192 x200 Watts =  1.6 MegaWatts
• Main Memory yields  in excess of 3 

MegaWatts (512 TBytes)
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COTS  PetaFlop  System
• 20.48  TFlops/Rack (128  die)
• 30 KWatts/Rack  - thus 64 racks - 30 inch
• Common  System I/O
• 2 Level Main Memory

– off-chip within same rack
– off-chip across network
– same bandwidth/longer latency
– meets  Byte/Flop metrics
– reduces  external  rack bandwidth by a factor of 10
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COTS  PetaFlop System
• Optical Interconnect

– OC768  Channels  (40 GHz)
– 128  Channels per Fiber (DWDM)-5.12 THz
– 2004/2005 Commercial  Transmission
– ALL  Optical Switching

• Bisection Bandwidth of  128 TBytes/sec (1 Pbit > 1 PFlop)
– 20 TFlops/rack*.1bytes/flop/sec*64 racks

• Rack  Bandwidth - 20  TFlops*.1= 2 TBytes/sec (full 
duplexed)

• 3-4  OPTICAL  MT-RJ Connectors  or equivalent per   
rack in each direction (3 x 5.12 or 4 x 5.12)

A Ratio of .2 Bytes/flop/sec is desirable
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COTS PetaFlop  System
Memory Hierarchy

• Physical Memory
– Cache
– Local Memory (Max 2 levels)
– Global Memory

• I/O
• Substantial Bandwidth (like a vector 

system)
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COTS  PetaFlop  System

I/O

ALL-OPTICAL 
SWITCH

Multi-Die
Multi-Processor

1

2
3

64

63

49
48

4 5
16

17

18

32

3347 46

128 die/box
4 CPU/die

10  meters= 50  NS Delay

...

...

...

...

LAN/WAN
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A Computer Room

SCC @ Los Alamos

40,000 sq. feet (4,000 sq. meters)
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A Computer

1200 SMP’s (4 CPU/SMP)
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Another Computer
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Layered Grid Architecture

Application

Connectivity“Talking to things”: communication 
(Internet protocols) & security

Resource“Sharing single resources”: 
negotiating access, controlling use

Collective
“Coordinating multiple resources”: 
ubiquitous infrastructure services, 
app-specific distributed services

Internet
Transport

Application

Link

In
tern

et Pro
to

co
l A

rch
itectu

re

Fabric“Controlling things locally”: Access 
to, & control of, resources

Source: NSF Teragrid
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Building Something New

Single devl env.
Single stack to 
learn
Develop here, run 
there
Run here, store 
there

The TeraGrid
(a Grid hosting environment)

Applications are developed 
for the Grids because the 
barriers are low and the 
return large

One Organization
(merge institutions)

Loose Collaboration
(current situation)

One sysadmin team
One mgmt team
Distributed machine 
room, centralized 
control

E.g. Google data centers

Different MPIs
Hit-and-miss grid 
software:

Globus 
version?
Condor-G?
G2?

Unique devl env.

Not a Grid, but with 
significant user 
investment, Grid apps can 
be developed

Not a Grid

Pete Beckman  <beckman@mcs.anl.gov>
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• Cluster – Disk

• Disk – Disk 

• Viz – Disk 

• DB – Cluster 

• Cluster – Cluster

UCSD OptIPuter LambdaGrid
Enabled by Chiaro Networkingwww.calit2.net/news/2002/11-18-chiaro.html

switch switch

switchswitch

Medical Imaging 
and Microscopy

Chemistry, 
Engineering, Arts

San Diego 
Supercomputer Center

Scripps Institution of 
Oceanography

Chiaro
Enstara

Image Source: Phil Papadopoulos, SDSC
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The OptIPuter 2003

Experimental Network
Wide Array of Vendors
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CONCLUDING

• David Nolte, “Mind at Light Speed: a New 
Kind of Intelligence”; Free Press, Nov. 
2001

• “..will the silicon transistor go the same way 
of the vacuum tube”
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Concluding

SAN FRANCISCO, Oct. 27 — STMicroelectronics plans to announce a 
breakthrough on Monday in light-emitting silicon that could lead to a 
new generation of more powerful computing processors and more 
efficient automobile components as well as potentially higher-speed 
optical data-transmission systems. 

New York Times; John Markoff
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